

Mandarin Translations

To cite any of the articles below, please refer to the full article and not the DOI of this translations section. 如需引用下列文章、敬请参照完整原文而勿引用本译文的DOI

So what do we call GPR18 now? 我们现在该把GPR18叫做什么?

SPH Alexander

School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, UK McHugh等人在本期的《英国药理学期刊》(British Journal of Pharmacology)中对孤儿G蛋白偶联受体GPR18做出 进一步鉴定后所发现的一个药理学特征,引出了关于该受体命名方法的一些有意思的问题,也提出了有关经典大 麻素受体CB₁和CB₂的一些药理学定义问题。

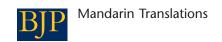
To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01731.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01731.x

 Δ^9 -Tetrahydrocannabinol and N-arachidonyl glycine are full agonists at GPR18 receptors and induce migration in human endometrial HEC-1B cells

Δ9-四氢大麻酚和N-花生四烯酸甘油是GPR18受体的完全激动剂并能 诱导人子宫内膜HEC-1B细胞迁移

Douglas McHugh¹, Jeremy Page¹, Emily Dunn¹ and Heather B Bradshaw^{1,2}

¹Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA, and ²Kinsey Institute for the Study of Sex, Gender and Reproduction, Indiana University, Bloomington, IN, USA


背景和目的:子宫内膜异位症是一种子宫内膜形成于子宫外部的疾病,与慢性疼痛相关。最近有证据表明,子宫 内膜细胞的运动性与子宫内膜异位症的病因有关。内源性大麻素系统能调节细胞迁移。考虑到内源性大麻素类越 来越多的与生殖相关,我们在本研究中探讨了内源性大麻素系统在子宫内膜细胞迁移中的作用。

实验方法:通过试验分析人子宫内膜HEC-1B细胞的迁移。运用标准的PCR技术确定HEC-1B细胞中出现的G蛋白 偶联受体GPR18,在稳定转染的HEK293-GPR18细胞中分析p44/42 MAPK以确定已知大麻素激动剂和拮抗剂的受 体特异性。利用进行脂质分析的HPLC/MS/MS技术测定N-花生四烯酸乙醇胺(AEA)的代谢。

关键结果:AEA、Δ°-四氢大麻酚(Δ°-THC)和*N*-花生四烯酸甘油(NAGly)能通过大麻素CB,受体非依赖性机制诱导 HEC-1B细胞的迁移。HEK293-GPR18细胞中的MAPK激活揭示了已知CB₁和CB₂受体配体在GPR18受体上的全新 药理学特性,包括能在纳摩尔浓度激活MAPK的Δ°-THC,但是WIN 55212-2、CP55940、JWH-133和JWH-015以及花生四烯酸-1-羟基-2-丙酰胺(R1-methanandamide)没有作用。此外,HEC-1B迁移及NAGly和Δ9-THC对MAPK的激活作用能被百日咳毒素AM251和大麻二酚拮抗。

结论与启示:我们如果要全面地评估大麻素信号系统在人类健康和疾病中的功能,就必须理解GPR18的功能和调 节及其与内源性配体的分子间相互作用,并理解植物源性大麻素类如何通过GPR18信号发挥作用。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01497.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01497.x

Inhibition of monoacylglycerol lipase attenuates vomiting in *Suncus murinus* and 2-arachidonoyl glycerol attenuates nausea in rats

抑制单酰甘油脂肪酶活性及2-花生四烯酸甘油酯可分别减轻鼩鼱和大鼠的呕吐和恶心反应

Martin A Sticht¹, Jonathan Z Long², Erin M Rock¹, Cheryl L Limebeer¹, Raphael Mechoulam³, Benjamin F Cravatt² and Linda A Parker¹

¹Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada, ²The Skaggs Institute for Chemical Biology, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA, and ³Institute of Drug Research, Medical Faculty, Hebrew University, Jerusalem, Israel

背景和目的:使用呕吐和恶心样行为(条件性张口反应)动物模型评价2-花生四烯酸甘油酯(2AG)在调节恶心与呕吐反应中的作用。

实验方法: JZL184是一种选择性单酰甘油脂肪酶(MAGL)抑制剂,能提高内源性2AG水平。实验中先对鼩鼱(Suncus murinus)以JZL184进行预处理,1小时后对其应用致吐化合物氯化锂,评估鼩鼱的呕吐反应。使用条件性张口反应模型评估外源性2AG或其代谢产物花生四烯酸(AA)对大鼠恶心样行为的调节功能。评估大麻素CB₁受体、CB₂受体与环氧合酶(COX)活性抑制在抑制呕吐或恶心样行为中的作用。

关键结果: JZL184能以剂量依赖方式抑制鼩鼱的呕吐反应,此作用可通过CB₁受体的反向激动剂/拮抗剂AM251预处理预防。JZL184能在体内抑制鼩鼱脑组织中的MAGL活性。2AG可抑制氯化锂诱导的大鼠条件性张口反应,但该作用不能被AM251或CB₂受体拮抗剂AM630预防。COX抑制剂吲哚美辛反而能预防2AG或AA对条件性张口反应的抑制作用。然而,当使用高剂量JZL184(40 mg/kg)预处理大鼠时,AM251可部分逆转2AG对张口反应的抑制作用。条件性张口反应的抑制作用与学习干扰无关,因为同等剂量的2AG并不改变条件性僵直反应对休克配对音的强度。

结论与启示: 我们的实验结果表明提升2AG的操作处理可能具有止吐或抗恶心的潜力。

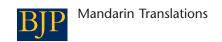
To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01407.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01407.x

Compartmentalization of endocannabinoids into lipid rafts in a microglial cell line devoid of caveolin-1

无caveolin-1的小胶质细胞系脂筏内的内源性大麻素类区室化

Neta Rimmerman¹, Heather B Bradshaw², Ewa Kozela³, Rivka Levy¹, Ana Juknat³ and Zvi Vogel³

¹Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel, ²Psychological and brain sciences, Indiana University, Bloomington, IN, USA, and ³Department of Physiology and Pharmacology, Sakler School of Medicine, the Dr Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Tel Aviv University, Ramat Aviv, Israel **投身和日始**: N 陳某了顧晓(NAEs)和2 花井四條殿甘油縣(2 AC) 具肉酒性大麻麦类,具与相关肚类一起应腊磷脂


背景和目的: N-酰基乙醇胺(NAEs)和2-花生四烯酸甘油酯(2-AG)是内源性大麻素类,是与相关肽类一起应膜磷脂的需求而被合成的。我们在本文中研究了无caveolin-1的小胶质细胞系BV-2以赋形剂或大麻二酚(CBD)处理后,分离的脂筏组分内的NAEs和2-AG区室化。将结果与caveolin-1阳性F-11细胞系的结果进行比较。

实验方法:以CBD或赋形剂培养BV-2细胞。利用不含清洁剂的连续性OptiPrep分离液密度梯度分享细胞。通过HPLC/MS/MS法量化各组分中的脂质。运用免疫印迹技术(Western blot)测定蛋白水平。

关键结果: BV-2细胞中没有caveolin-1。Flotillin-1和鞘磷脂的共定位证明BV-2细胞中分离出了脂筏。脂筏组分中发现有少量的大麻素 CB_1 受体。CBD处理后,脂筏中2-AG、N-花生四烯酸乙醇胺(AEN)和N-油酰乙醇胺(OEA)的水平和分布没有变化。相反,脂筏组分中饱和N-硬脂酰乙醇胺(SEA)和N-棕榈酰乙醇胺(PEA)的水平升高。在有生长培养基的全细胞中,CBD处理以时间依赖性方式提高了AEA和OEA水平,但2-AG、PEA和SEA的水平没有变化。

结论与启示:虽然2-AG的水平不受CBD处理的影响,但是NAEs的分布和水平发生了显著变化。在NAEs中,酰链的饱和度可以预测CBD处理后的区室化,这表明了细胞信号活性的变化。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01380.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01380.x

Δ^8 -Tetrahydrocannabivarin prevents hepatic ischaemia/reperfusion injury by decreasing oxidative stress and inflammatory responses through cannabinoid CB₂ receptors

Δ^8 -四氢次大麻酚能经大麻类CB。受体减少氧化应激和炎症反应以预防 肝的缺血/再灌注损伤

Sándor Bátkai¹, Partha Mukhopadhyay¹, Bėla Horváth^{1,6}, Mohanraj Rajesh¹, Rachel Y Gao¹, Anu Mahadevan², Mukkanti Amere², Natalia Battista³, Aron H Lichtman⁴, Lisa A Gauson⁵, Mauro Maccarrone³, Roger G Pertwee⁵ and Pál Pacher¹

¹Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA, ²Organix Inc., Woburn, MA, USA, ³Department of Biomedical Sciences, University of Teramo, Teramo, Italy, & European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy, 4The Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA, 5School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK, and ⁶Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary

背景和目的:激活大麻类 CB_2 受体能防止各种形式的缺血-再灌注(I/R)损伤。 Δ^8 -四氢次大麻酚 $(\Delta^8$ -THCV)是植物性 大麻素 Δ^9 -四氢次大麻酚(Δ^9 -tetrahydrocannabivarin)的合成性相似物,对啮齿类动物有抗炎作用,这与CB $_2$ 受体 的激活有关。我们在本研究中评估了 Δ^8 -THCV及其代谢物11-OH- Δ^8 -THCV对CB。受体的作用和防止肝I/R损伤的

实验方法:利用CHO细胞中表达的人CB。受体测定体外作用。小鼠缺血1小时和体内再灌注2、6和24小时后评估 肝的I/R损伤。

关键结果: $[^3H]$ CP55940被 Δ^8 -THCV或11-OH- Δ^8 -THCV从人CB₂受体(hCB₂)转染的CHO细胞膜特定结合位点置换 后,分别产生了68.4 nM和59.95 nM的 K_i 值。 Δ^8 -THCV或11-OH- Δ^8 -THCV能抑制毛喉素刺激的hCB₂ CHO细胞 cAMP生成(EC_{50} 分别为12.95 nM和14.3 nM)。诱导I/R前应用的 Δ^8 -THCV能减轻肝损伤(通过血清丙氨酸转氨 酶水平和天冬氨酸转氨酶水平测定),减少组织中的蛋白质羰基加合物4-羟基-2-壬烯醛,趋化因子CCL3和 CXCL2, TNF-α,细胞内粘附分子1(CD54)的mRNA水平,组织的中性粒细胞浸润,caspase 3/7活性和DNA断 裂。如果在再灌注开始时给药,Δ8-THCV对肝损伤的保护作用仍然会出现。利用CB2受体拮抗剂进行预处理后能减

结论与启示: Δ^8 -THCV能体外激活 CB_2 受体,体内减轻组织损伤和炎症,在一定程度上通过 CB_2 受体激活与I/R相关。

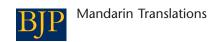
To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01410.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01410.x

A new cannabinoid CB₂ receptor agonist HU-910 attenuates oxidative stress, inflammation and cell death associated with hepatic ischaemia/reperfusion injury

新型大麻素CB2受体激动剂HU-910能减少肝缺血/再灌注相关的氧化 应激、炎症和细胞死亡

Bėla Horváth^{1,5}, Lital Magid³, Partha Mukhopadhyay¹, Sándor Bátkai¹, Mohanraj Rajesh¹ Ogyi Park² Galin, Tanchian¹, Rachel Y Gao¹, Catherine E Goodfellow⁴, Michelle Glass⁴, Raphael Mechoulam² and Pál Pacher¹

¹Laboratory of Physiologic Studies and ²Liver Disease, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA, ³Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel, ⁴Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand, and ⁵Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary


背景和目的:已有报告表明,激活大麻素CB,受体能减少心肌、脑和肝的缺血-再灌注(I/R)损伤。

实验方法:我们运用一个小鼠节段性肝缺血/再灌注模型,探讨了一种新的CB。受体激动剂──((1S,4R)-2-(2,6-二甲氧基-4-(2-甲基辛-2-基)苯基)-7,7-二甲基双环[2.2.1]庚-2-烯-1-基)甲醇──即HU-910,对缺血1小时后再 灌注2小时、6小时或24小时诱导的肝损伤的作用。

关键结果: HU-910将 $[^3H]$ CP55940从人CB2或CB1受体(hCB12)转染CHO细胞膜的特异性结合位点置换时产生的 K_i 值分别是6 nM和1.4 μ M。HU-910能抑制毛喉素刺激的hCB₂ CHO细胞环磷酸腺苷生成(EC₅₀ = 162 nM);而在 利用表达CHO膜的hCB₂进行的[35S]GTP₇S结合试验中,产生的EC₅₀值为26.4 nM。缺血前应用HU-910能显著降 低或减少I/R诱导的肝脏促炎性趋化因子(CCL3和CXCL2)水平、TNF-α生成、细胞间粘附分子1表达、中性粒细 胞浸润、氧化应激和细胞死亡。再灌注开始阶段或缺血发生1小时后,HU-910的有益作用仍然存在。此外,HU-910还能减少分离的Kupffer细胞中细菌内毒性触发的TNF-α生成和TNF-α刺激的原代人肝窦内皮细胞中的粘附 分子表达。以CB2受体拮抗剂进行预处理减少了HU-910的保护作用,而CB1受体拮抗剂却倾向于增强其保护

结论与启示:HU-910是一种强效的CB₂受体激动剂,能在各种炎症和组织损害相关疾病中发挥保护作用。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01381.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01381.x

The cannabinoid CB₁ receptor antagonists rimonabant (SR141716) and AM251 directly potentiate GABA_A receptors

大麻素CB₁受体拮抗剂利莫那班(SR141716)和AM251能直接增强 GABA。受体反应

R Baur, J Gertsch and E Sigel

Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstr, Bern, Switzerland

背景和目的:利莫那班(SR141716)和结构相关的AM251在药理学实验中被广泛用作选择性大麻素 CB_1 受体拮抗剂/反向激动剂。体外实验中通常采用0.5–10 μ M的浓度范围。本研究旨在证明这些药物不会作用于 $GABA_A$ 受体,但是有显著的正性变构调节作用。

实验方法:在非洲爪蟾卵母细胞中表达重组的GABA_A受体。受体在有或没有GABA应用的情况下在AM251或利莫那班中暴露。运用标准的电生理学技术监测诱导的离子电流。

关键结果:在重组 $\alpha_1\beta_2\gamma_2$ GABA_A受体上,AM251能以剂量依赖性方式增强0.5 μ M GABA引起的反应,EC₅₀值小于 1 μ M ,最大增强效果达8倍左右。希尔系数表明AM251在该受体中的结合部位不止一个。利莫那班的亲和性比 AM251低,但效果比后者高4倍。AM251也能加强 $\alpha_1\beta_2$ 、 $\alpha_x\beta_2\gamma_2$ (x=2,3,5,6)、 $\alpha_1\beta_3\gamma_2$ 和 $\alpha_4\beta_2\delta$ GABA_A受体介导的电流,但对 $\alpha_1\beta_1\gamma_2$ 介导的电流没有该作用。有趣的是,1 μ M的CB₁受体拮抗剂LY320135和O-2050没有给 $\alpha_1\beta_2\gamma_2$ GABA_A受体介导的电流带来显著影响。

结论与启示:本研究确定利莫那班和AM251是GABA_A受体的正性变构调节剂。因此,在体外实验中,特别是在GABA浓度很低的突触外部位,应当考虑这些化合物在常用浓度下的潜在γ-氨基丁酸能(GABAergic)作用。

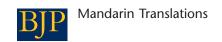
To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01405.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01405.x

The fatty acid amide hydrolase (FAAH) inhibitor PF-3845 acts in the nervous system to reverse LPS-induced tactile allodynia in mice

脂肪酸酰胺水解酶(FAAH)抑制剂PF-3845能作用于小鼠神经系统而逆转 LPS诱发的触痛过敏

Lamont Booker¹, Steven G Kinsey¹, Rehab A Abdullah¹, Jacqueline L Blankman², Jonathan Z Long², Cyrine Ezzili³, Dale L Boger³, Benjamin F Cravatt² and Aron H Lichtman^{1,4}

¹Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA, ²Department of Chemical Physiology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA, ³Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA, and ⁴Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA


背景和目的:炎症性疼痛是一个重大的临床问题,往往会引起痛觉过敏,而在痛觉过敏的病理状态下,即使是无害的刺激,也会使人产生痛觉。治疗炎症性疼痛的一个潜在靶点是内源性大麻素(endocannabinoid)系统,它由 CB_1 和 CB_2 大麻素受体和几个内源性配体(包括anandamide;AEA)组成。阻断分解代谢酶——脂肪酸酰胺水解酶 (FAAH),能提高AEA水平,诱发镇痛作用,而不会产生与 Δ^9 -四氢大麻酚(THC)相关的拟精神病副作用。

实验方法:足底注射LPS诱导痛觉过敏。通过补充的遗传学和药理学方法,确定阻断FAAH而逆转LPS诱发的触痛过敏的策略。通过质谱分析量化内源性大麻素水平。

关键结果: FAAH基因敲除($^{\prime\prime}$)小鼠或野生型小鼠应用FAAH抑制剂(URB597、OL-135和PF-3845)后表现出了抗痛觉过敏的表型。此外,腹腔注射PF-3845能提高脑和脊髓中的AEA水平。足底注射PF-3845也能部分减少痛觉过敏。然而,神经系统中在有神经元特异性烯醇化酶基因启动子的条件下广泛表达FAAH的小鼠却没有出现抗痛觉过敏表型,表明与神经元脂肪酸酰胺(FAAs)有关。FAAH损伤小鼠的抗痛觉过敏作用必须激活CB₁和CB₂受体,但是对其它FAA底物的潜在靶点(即 μ -阿片、TRPV1和PPAR α 受体)没有明显作用。

结论与启示: AEA是减轻LPS所诱发的触痛过敏的基本FAAH底物。阻断神经元FAAH能通过激活这两个大麻素类体逆转痛觉过敏,是治疗炎症性疼痛的一个有希望的靶点。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01445.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01445.x

Cannabinoid CB₁ receptors transactivate multiple receptor tyrosine kinases and regulate serine/threonine kinases to activate ERK in neuronal cells

大麻素CB₁受体能反式激活多个受体酪氨酸激酶和调节丝氨酸/苏氨酸激酶从而激活神经元细胞的ERK

George D Dalton and Allyn C Howlett

Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA

背景和目的:人们对神经元中调节大麻素CB₁受体介导细胞外信号调节激酶(ERK)激活进程的信号网络了解得非常有限。本研究借助一个神经元细胞模型,探索了涉及CB₁受体刺激ERK磷酸化的相关细胞机制。

实验方法:利用小鼠N18TG2神经元细胞,分析特异性蛋白激酶和磷酸酶抑制剂对CB₁受体刺激ERK磷酸化的作用。运用LI-COR In Cell Western试验和免疫印迹法测定ERK磷酸化水平。

关键结果:在N18TG2细胞中,CB₁受体刺激ERK磷酸化的时程分为三个阶段,它们受明显不同的细胞受体调节。第1阶段(0–5分钟)的最大ERK磷酸化,是由CB₁受体刺激配体非依赖性方式反式激活多个受体酪氨酸激酶(RTKs)介导的。第1阶段必须有 $G_{i/o}$ βγ亚基刺激的磷脂酰肌醇-3-激酶激活和Src激酶激活,受cAMP激活蛋白激酶A(PKA)水平抑制的调节。蛋白酪氨酸磷酸酶1B和Shp1能调节Src激酶的激活。第2阶段(5–10 min)的ERK磷酸化水平快速下降与PKA抑制和丝氨酸/苏氨酸磷酸酶PP1/PP2A激活有关。第3阶段(10分钟以上)的ERK磷酸化平稳期受多个RTKs的CB₁受体刺激、配体非依赖性反式激活介导。

结论与启示: CB_1 受体刺激ERK激活的复杂表达提供了细胞选择性、激动剂敏感性调节和RTK信号符合探测。RTK和PKA通路可能为成瘾性疾病或神经退行性疾病的治疗提供了基于 CB_1 受体的全新治疗干预途径。

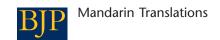
To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01455.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01455.x

Differential transcriptional profiles mediated by exposure to the cannabinoids cannabidiol and Δ^9 -tetrahydrocannabinol in BV-2 microglial cells

大麻素类中大麻二酚和A9-四氢大麻酚暴露介导的BV-2小神经胶质细胞 不同转录特征

Ana Juknat¹, Maciej Pietr², Ewa Kozela¹, Neta Rimmerman², Rivka Levy², Giovanni Coppola³, Daniel Geschwind³ and Zvi Vogel^{1,2}

¹The Dr. Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel, ²Neurobiology Department, Weizmann Institute of Science, Rehovot, Israel, and ³Program in Neurogenetics, Department of Neurology, University of California, Los Angeles, CA, USA


背景和目的:大麻素类除了有情绪和大脑奖赏作用外,还有诸如神经保护和减轻炎症的有益作用。大麻素类的免 疫抑制活性已经被确证,但是其作用机制在很大程度上仍不为人知。我们此前有研究显示,有精神刺激作用的大 麻素类 Δ^9 -四氢大麻酚(THC)和无精神刺激作用的大麻二酚(CBD)的抗炎信号通路不同。

实验方法: 为描述CBD和THC转录作用的特征,我们将这些化合物应用于BV-2小胶质细胞,利用Illumina MouseRef-8 BeadChip基因芯片平台进行微阵列比较分析。利用通路分析软件Ingenuity Pathway Analysis确定 CBD和/或THC调节基因和网络的功能性亚基。

关键结果: 总的来看, CBD能改变更多基因的表达; 在处理中被差异性调节的1298个转录物中, 分别有680和 58个基因探针组(gene probe sets)被CBD和THC上调;有524种基因产物被CBD下调,但仅有36种被THC下调。 CBD特异性基因表达特征表明存在与氧化应激和谷胱甘肽耗竭相关的变化,这些变化一般出现于营养盐限制或蛋 白酶体抑制条件下,并与GCN2/eIF2α/p8/ATF4/CHOP-TRIB3通路有关。此外,CBD刺激基因可被与应激反应调 节和炎症相关的核因子——主要是通过(EpRE/ARE)-Nrf2/ATF4系统和Nrf2/Hmox1轴——控制。

结论与启示:这些发现显示,CBD能诱导小胶质细胞中的细胞应激反应(但程度比THC小得多),表明这种作用 可能是其抗炎活性的基础。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01461.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01461.x

Combined effects of THC and caffeine on working memory in rats 大鼠同时应用THC和咖啡因后对工作记忆的作用

Leigh V Panlilio¹, Sergi Ferré¹, Sevil Yasar², Eric B Thorndike¹, Charles W Schindler¹ and Steven R Goldberg¹

¹Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA, and ²Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, USA

背景和目的:大麻和咖啡因是两种应用最广泛的精神刺激物质。 Δ^9 -四氢大麻酚(THC)是大麻的主要精神活性成分,它能导致短期记忆缺陷。咖啡因是一种非选择性腺苷受体拮抗剂,能部分减轻记忆缺陷,但研究极少探讨咖啡因与THC联合应用时的作用。我们将在本研究中通过一个啮齿类动物工作记忆模型来评估这些药物的作用。

实验方法:给大鼠应用THC(0×1 和3 mg/kg,腹腔注射),同时应用咖啡因($0 \times 1 \times 3$ 和10 mg/kg;腹腔注射),选择性腺苷A₁受体拮抗剂CPT(0×3 和10 mg/kg)或者选择性腺苷A_{2A}受体拮抗剂SCH58261(0和5 mg/kg),通过"延迟性位置不匹配"程序(delayed non-matching-to-position procedure)进行测试,记录延迟中的大鼠行为,以其作为一个"记忆复述"(memory rehearsal)模型。

关键结果:单独应用3 mg/kg的THC能导致记忆缺陷。咖啡因(10 mg/kg)初始暴露会干扰"复述样"行为的既定模式,但是会迅速形成对该作用的耐受性。CPT和SCH58261单独应用对复述或记忆没有显著作用。当亚阈值剂量的THC(1 mg/kg)与咖啡因(10 mg/kg)或者CPT(10 mg/kg)联合应用时,记忆能力显著受损,尽管复述样模式的表现无显著改变。

结论与启示:咖啡因对THC诱导的记忆缺陷没有抵抗作用,事实上反而会使之恶化。这些结果与最近的研究发现一致,都显示腺苷A₁受体能调节海马中的大麻素信号。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01554.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01554.x

The anandamide transport inhibitor AM404 reduces the rewarding effects of nicotine and nicotine-induced dopamine elevations in the nucleus accumbens shell in rats

Anandamide转运抑制剂AM404能降低烟碱的奖赏作用和烟碱诱导的大鼠伏隔核壳部多巴胺水平升高

Maria Scherma^{1,2}, Zuzana Justinová^{1,3}, Claudio Zanettini¹, Leigh V Panlilio¹, Paola Mascia¹, Paola Fadda², Walter Fratta², Alexandros Makriyannis⁴, Subramanian K Vadivel⁴, Islam Gamaleddin⁵, Bernard Le Foll^{5,6} and Steven R Goldberg¹

¹Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA, ²B.B. Brodie Department of Neuroscience, University of Cagliari, Cagliari, Italy, ³MPRC, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA, ⁴Center for Drug Discovery, Northeastern University, Boston, MA, USA, ⁵Translational Addiction Research Laboratory and Addiction Program, Centre for Addiction and Mental Health, Toronto, ON, Canada, and ⁶Departments of Psychiatry, Pharmacology, Family and Community Medicine and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada

背景和目的:脂肪酸酰胺水解酶抑制剂URB597能逆转与大鼠烟碱滥用相关的行为和神经化学作用。脂肪酸酰胺水解酶抑制剂能阻断内源性大麻素anandamide (AEA)的降解(因此能使作用扩大、时间延长),也能阻断非大麻素类脂肪酸乙醇胺即油酰乙醇胺(oleoylethanolamide; OEA)和棕榈酰乙醇胺(palmitoylethanolamide; PEA)的降解。OEA和PEA是过氧化物酶体增殖物激活受体- α (PPAR α)的内源性配体。由于最近有证据表明PPAR α 能调节烟碱的类赏效应,因此不清楚AEA是否与URB597对烟碱奖赏效应的作用有关。

实验方法:选择性升高内源性AEA水平但不改变OEA或PEA水平的方法之一是,应用AEA转运抑制剂N-(4-羟基苯)花生四烯酸酰胺(AM404)抑制细胞中的AEA摄取。为阐述AEA在烟碱奖赏效应中所起的作用,我们考查了AM404对Sprague-Dawley大鼠的条件性位置偏爱(CPP)、CPP消除后的恢复、开放场合的运动抑制和焦虑解除(anxiolysis)、烟碱诱导的大鼠伏隔核壳部多巴胺水平升高等方面的作用。

关键结果: AM404能防止烟碱诱导性CPP的形成,阻碍烟碱诱导的CPP消除后的恢复。此外,AM404还能减少伏隔核壳部(中脑边缘奖赏系统的末端区域)的烟碱诱导性多巴胺水平升高。AM404不会改变烟碱的运动抑制或焦虑解除作用。

结论与启示:这些发现表明,抑制AEA转运可以对抗烟碱的成瘾作用,也表明在开发烟草依赖治疗药物时,可以将AEA转运作为一个新的靶点。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01467.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01467.x

The endocannabinoid system in the rat dorsolateral periaqueductal grey mediates fear-conditioned analgesia and controls fear expression in the presence of nociceptive tone

大鼠背外侧导水管周围灰质中的内源性大麻素系统在出现伤害感受紧张 时能介导恐惧条件性镇痛作用和控制恐惧表达

WM Olango^{1,3,4}, M Roche^{2,3,4}, GK Ford^{1,3,4}, B Harhen^{3,4} and DP Finn^{1,3,4}

¹Pharmacology and Therapeutics and ²Physiology, School of Medicine, ³NCBES Neuroscience Cluster and ⁴Centre for Pain Research, National University of Ireland, Galway, Ireland

背景和目的:中脑水管周围灰质(PAG)中的内源性大麻素类能调节伤害感受和非条件性应激诱导的镇痛作用。然而,它们在恐惧条件性镇痛(FCA)中的作用尚未被探明。本研究考查了背外侧(dl)PAG内的内源性大麻素系统在福尔马林诱导的大鼠伤害感行为、条件性恐惧和FCA中的作用。

实验方法: 大鼠接受dlPAG内应用的CB₁受体拮抗剂/反向激动剂利莫那班或赋形剂,然后重复暴露于此前已配合足底电击(foot shock) 24小时的环境之下。评估福尔马林诱导的伤害感行为和恐惧相关行为(冷冻和22 kHz的超声发声)。在另一个队列中,在有或没有福尔马林所致的伤害感受紧张时重复暴露于条件环境,然后测定dlPAG组织中内源性大麻素类[2-花生四烯酸甘油(2-AG)和花生四烯酸乙醇胺(anandamide; AEA)]的水平和相关N-酰基乙醇胺(NAEs)[N-棕榈酰乙醇胺(PEA)和N-油酰乙醇胺(OEA)]的水平。

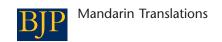
关键结果:大鼠重复暴露于此前与足底电击相关的环境下将产生FCA。dlPAG内应用利莫那班可以显著减少有伤害感紧张时表达的FCA和恐惧相关行为。无福尔马林诱导性伤害感紧张的条件性恐惧,与dlPAG中的2-AG、AEA、PEA和OEA水平升高相关。FCA尤其与dlPAG中的AEA水平升高相关。

结论与启示:对环境的条件性恐惧能调动dlPAG中的内源性大麻素类和NAEs。这些研究资料支持dlPAG中的内源性大麻素类能发挥一个作用——它们会参与介导对条件性厌恶环境暴露时出现的疼痛反应的强效抑制作用。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01478.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01478.x

AM630 behaves as a protean ligand at the human cannabinoid CB₂ receptor AM630具有人类大麻CB₂受体多能配体的作用

Daniele Bolognini^{1,2}, Maria Grazia Cascio¹, Daniela Parolaro² and Roger G Pertwee¹
¹Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; and ²DBSF, Pharmacology Section and Neuroscience Centre, University of Insubria, Varese, Italy


背景和目的:本研究旨在考查以CB₂受体拮抗剂/反向激动剂AM630和SR144528预培养hCB₂ CHO细胞时,对于这些配体和其它配体靶向这些细胞或细胞膜中的hCB₂受体所产生的影响。

实验方法:本研究观察AM630,SR144528和CB₁/CB₂受体激动剂CP55940以及R-(+)-WIN55212在hCB₂ CHO细胞中对毛喉素引发cAMP产物的能力或[35 S]-GTP γ S结合至胞膜能力或取代与细胞膜或全细胞结合[3 H]-CP55940的能力的影响。同时观察CB₂受体部分激动剂 Δ 9-四氢次大麻酚(Δ 9-tetrahydrocannabivarin)的作用。部分细胞与AM630或SR144528预培养然后充分洗涤。

关键结果:AM630在与AM630预培养过的细胞中只起低效中性竞争性拮抗剂的作用;在SR144528预培养过的细胞中起低效激动剂的作用;在溶剂预培养的细胞中却有较高效的反向激动剂/拮抗剂功能。与AM630预培养(i)降低而不是完全抵消SR144528的反向激动功效;(ii)增强 Δ^9 -四氢次大麻酚的作用;(iii)不影响AM630从全细胞中置换 [3 H]-CP55940的强度,或者其在[35 S]-GTP $_{\Lambda}$ E膜试验中的反向激动强度和功效。

结论与启示:结果表明AM630是一种多能配体,它不仅能以低亲和力与组成性活性形式的 hCB_2 受体 (R^*) 结合产生激动或中性拮抗效应,也能以高亲和力与无组成性活性的 hCB_2 受体(R)结合产生反向激动效应;也表明,AM630预培养降低全细胞组成性活性的程度小于以效果较高的反向激动剂SR144528预培养。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01503.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01503.x

Δ^9 -Tetrahydrocannabinol (Δ^9 -THC) attenuates mouse sperm motility and male fecundity

Δ°-四氢大麻酚(Δ°-THC)能降低小鼠的精子活动能力和雄性繁殖力

Daniel J Morgan^{1,2}, Charles H Muller³, Natalia A Murataeva^{1,2}, Brian J Davis^{1,2} and Ken Mackie^{1,2}

¹Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA, ²Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA, and ³Department of Urology, University of Washington School of Medicine, Seattle, WA, USA

背景和目的:许多研究显示,N-花生四烯酸乙醇胺(N-arachidonoylethanolamine;AEA)能抑制精子的活动能力和功能,但是大麻素类抑制精子活动性的能力尚未被阐明。本研究探讨了 CB_1 大麻素受体激动剂WIN 55,212-2和 Δ^0 -四氢大麻酚(Δ^0 -THC)对小鼠精子ATP水平和运动能力的体外作用。此外还确定了急性应用 Δ^0 -THC对雄性繁殖力的作用。

实验方法:通过计算机辅助精子分析(CASA)确定 Δ° -THC对精子基础运动学性质的作用。利用定格影像术(Stopmotion imaging)测定精子摆动频率。通过荧光素酶试验确定 Δ° -THC对精子ATP的作用。通过评估 Δ° -THC给药雄性小鼠的产仔数分析雄鼠的生育能力。

关键结果:以1 μM的Δ 9 -THC对精子进行15分钟预处理,可以减少精子的基础运动性和降低重碳酸盐刺激精子尾部摆动频率的能力。以5 μM的55,212-2或者10 μM的Δ 9 -THC处理30分种后,可以降低精子中的ATP水平。在没有CB $_1$ 受体的精子中,WIN 55,212-2对ATP的这种作用被减弱,但Δ 9 -THC的作用无变化。雄性小鼠交配前应用 Δ^9 -THC(50 mg/kg)导致同胎产仔数减少20%。

结论与启示: Δ^9 -THC能体外抑制基础和重碳酸盐刺激的精子运动能力,体内降低雄性生育力。高浓度的WIN55,212-2或 Δ^9 -THC可抑制精子中的ATP生成;WIN 55,212-2的这个作用有 CB_1 受体依赖性,但 Δ^9 -THC的该作用呈现 CB_1 受体非依赖性。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01506.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01506.x

Cannabinoids and bone: endocannabinoids modulate human osteoclast function *in vitro*

大麻素类与骨:内源性大麻素类能体外调节人破骨细胞功能

LS Whyte, L Ford, SA Ridge, GA Cameron, MJ Rogers and RA Ross

Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK

背景和目的:已有研究表明 CB_1 与 CB_2 两种大麻素受体在骨代谢过程中发挥作用。重要的是,先前的研究主要集中在大麻素配体在啮齿类骨细胞中的作用。本研究旨在体外研究大麻素类对人骨细胞的作用。

实验方法:分别使用定量RT-PCR技术与液相色谱电喷雾电离串联质谱法确定人骨细胞中大麻素受体表达与内源性大麻素类的存在。通过评估表达 $\alpha_v\beta_3$ 或具有F肌动蛋白环的细胞数量,或测量骨吸收面积检测大麻素类对人破骨细胞形成、极化与骨吸收的作用。

关键结果:人破骨细胞能表达 CB_1 与 CB_2 受体。与分化的破骨细胞相比, CB_2 受体在人单核细胞中的表达明显较高。此外,单核细胞分化为人破骨细胞与2-AG水平的降低和anandamide(AEA)水平的升高相关。使用LPS处理破骨细胞能显著提高AEA水平。纳摩浓度的AEA和合成性激动剂CP 55 940与JWH015均可刺激人破骨细胞极化与骨吸收。这些作用在 CB_1 与 CB_2 两受体拮抗剂存在的情况下可以被减弱。

结论与启示:低浓度的大麻素类物质可体外激活人破骨细胞。 CB_2 受体表达与内源性大麻素物质生成的动态调节存在于人骨细胞分化期间。这些资料表明调制内源性大麻素系统的小分子在人骨疾病中可能是重要的治疗性化合物。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01519.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01519.x

Cannabinoids mediate opposing effects on inflammation-induced intestinal permeability

大麻素类可介导与炎症诱导性肠道通透性相反的作用

A Alhamoruni¹, KL Wright², M Larvin¹ and SE O'Sullivan¹

¹School of Graduate Entry Medicine & Health, Derby City General Hospital, University of Nottingham, Derby, UK, and ²Division of Biomedical and Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancashire, UK

背景和目的:激活大麻素受体可以减轻呕吐、炎症,减少胃酸分泌和肠运动。调节炎症中肠道通透性的能力对以维持上皮屏障完整性为目的的疗法有重要意义。本研究旨在确定大麻素类能否体外调节炎症相关的通透性增强。

实验方法:对汇合的Caco-2细胞单层以IFN γ 和TNF α (10 ng/mL)处理24小时。通过跨上皮电阻和流量测定确定细胞单层的通透性。炎症被确定后,顶部或者底侧应用大麻素类。运用CB₁、CB₂、TRPV1、PPAR γ 和PPAR α 的拮抗剂考查潜在的作用机制。利用内源性大麻素合成和降解的抑制剂确定内源性大麻素系统的作用。

关键结果: Δ^9 -四氢大麻酚(THC)和大麻二酚能加速细胞因子诱导的通透性提高的恢复;这个作用对 CB_1 受体拮抗敏感。在有细胞因子存在的条件下,anandamide和2-花生四烯酸甘油能进一步提高通透性,这个作用也对 CB_1 受体的拮抗有敏感性。这些研究中未发现 CB_2 受体有何作用。细胞因子联合应用THC、大麻二酚或 CB_1 拮抗剂时,能加强它们对通透性的作用。抑制内源性大麻素的分解将加剧与炎症相关的通透性增加,而抑制内源性大麻素的合成却可使之减轻。

结论与启示:这些发现表明,局部产生的内源性大麻素类通过 CB_1 受体行使功能,对于介导炎症相关的通透性变化有一定的作用;植物源性大麻素类对于逆转炎症相关的肠道通透性紊乱有潜在的治疗价值。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01589.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01589.x

The GPCR-associated sorting protein 1 regulates ligand-induced down-regulation of GPR55

GPCR相关分选蛋白1能调节配体诱导的GPR55下调

J Kargl¹, NA Balenga¹, W Platzer¹, L Martini, JL Whistler² and M Waldhoer¹

¹Institute for Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria, and ²Ernest Gallo Clinic and Research Center, University of California, San Francisco, CA, USA

背景和目的:包括 CB_1 大麻素受体在内的多种GPCRs通过与GPCR相关分选蛋白1 (GASP-1)的相互作用,在激动剂长时间暴露后会下调。最近有研究证实 CB_1 受体拮抗剂利莫那班是GPR55 (一种大麻素相关受体)的激动剂。本研究观察激动剂暴露后GPR55的内吞作用以及GASP-1在此过程中的作用。

实验方法:以下列方法评价GPR55和GASP-1之间的相互作用:(i)GST结合实验(ii)对表达GASP-1的GPR55-HEK293细胞行免疫共沉淀法。此外,在GASP-1或GASP-1失活(慢病毒载体小发夹RNA敲除GASP-1)状态下用共聚荧光显微镜以及生物素分析GPR55在长时间激动剂[利莫那班(RIM)选择性内源性大麻素CB1受体拮抗剂,以及溶血磷脂酰肌醇(LPI)]暴露后内化、循环和降解的过程。

关键结果:结果显示用利莫那班或LPI长时间活化GPR55后可以通过GASP-1下调GPR55。GASP-1可在体外与GPR55结合,而且这种结合是GPR55降解必需的。GPR55-GASP-1相互作用受到干扰后可抑制内吞受体的降解而参与受体的再循环。

结论与启示:本研究结果表明GASP-1是配体介导的GPR55下调过程中的重要调节因子。由于确定了GASP-1是GPR55转运的关键调节因子,同时也是GPR55功能表达的关键调节因子,我们就能更好地理解该受体对大麻素类药物的意义。

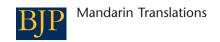
To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01562.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01562.x

Cannabidiol, a non-psychotropic component of cannabis, attenuates vomiting and nausea-like behaviour via indirect agonism of 5-HT1A somatodendritic autoreceptors in the dorsal raphe nucleus

大麻中提取的非精神作用成分——大麻二酚——通过间接激动中缝背核中的5-HT₁₄躯体树突自身受体减轻呕吐和恶心样行为

EM Rock¹, D Bolognini², CL Limebeer¹, MG Cascio², S Anavi-Goffer², PJ Fletcher³, R Mechoulam⁴, RG Pertwee² and LA Parker¹

¹Department of Psychology and Neuroscience Graduate Program, University of Guelph, Guelph, ON, Canada, ²Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK, ³Centre for Addiction and Mental Health and Department of Psychology, University of Toronto, Toronto, ON, Canada, and ⁴Institute of Drug Research, Hebrew University Medical Faculty, Jerusalem, Israel


背景和目的:本研究的目的是验证中缝背核(DRN)的躯体树突5-HT_{1A}自身受体激活可形成大麻二酚(CBD,一个在大麻中发现的主要非精神活性大麻素)的止吐/抗恶心作用的假设。

实验方法:系统性注射和DRN内注射5-HT_{1A}受体拮抗剂WAY100135或WAY100635,对其预防鼩鼱(Suncus murinus)中CBD的止吐作用与大鼠中CBD抗恶心样作用(条件性张口反应)的潜力进行评估。同样,对DRN内CBD注射产生抗恶心样作用(并可被系统性注射的WAY100635逆转)的能力进行评估。通过体外研究评估CBD直接靶向5-HT_{1A}受体及修饰5-HT_{1A}激动剂8-OH-DPAT刺激[35 S]GTP $_{YS}$ 结合至大鼠脑干膜能力的潜力。

关键结果: CBD能抑制尼古丁、氯化锂(LiCl)和顺铂(20 mg/kg,但非40 mg/kg的剂量)诱导的鼩鼱呕吐以及LiCl诱导的大鼠条件性张口反应。WAY100135能抑制CBD的止吐与抗恶心样的作用,而WAY100635则可抑制抗恶心样作用。当注射至DRN时:(1)WAY100635能逆转全身性应用的CBD抗恶心样作用,(2)CBD能抑制恶心样作用,该作用可被全身应用的WAY100635逆转。CBD在体外增强8-OH-DPAT刺激[35S]GTPγS结合至大鼠脑干膜的能力方面也表现出显著的效力(在钟形剂量-反应曲线中)。全身注射CBD与8-OH-DPAT可协同性地抑制LiCl诱导的条件性张口反应。

结论与启示:这些资料表明CBD通过间接激活DRN中躯体树突5-HT_{1A}自身受体来形成止吐/抗恶心样的作用。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01621.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01621.x

Effects of palmitoylation of Cys⁴¹⁵ in helix 8 of the CB₁ cannabinoid receptor on membrane localization and signalling

CB₁大麻素受体螺旋8中Cys⁴¹⁵的棕榈酸化对膜定位和信号的作用

Sergio Oddi^{1,2}, Enrico Dainese^{1,2}, Simone Sandiford³, Filomena Fezza^{2,4}, Mirko Lanuti^{1,2}, Valerio Chiurchiù², Antonio Totaro², Giuseppina Catanzaro^{1,2}, Daniela Barcaroli⁵, Vincenzo De Laurenzi⁵, Diego Centonze^{2,6}, Somnath Mukhopadhyay³, Jana Selent⁷, Allyn C Howlett⁸ and Mauro Maccarrone^{1,2}

¹Department of Biomedical Sciences, University of Teramo, Teramo, Italy, ²European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S., Rome, Italy, ³Neuroscience/Drug Abuse Research Program, Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA, ⁴Department of Experimental Medicine and Biochemical Sciences, University of Rome 'Tor Vergata', Rome, Italy, ⁵Department of Biomedical Sciences, University of Chieti-Pescara 'G. d'Annunzio', Chieti, Italy, ⁶Department of Neurosciences, University of Rome 'Tor Vergata', Rome, Italy, ⁷Research Group of biomedical Informatics (GRIB-IMIM), University of Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain, and ⁸Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC, USA

背景和目的: CB_1 大麻素受体受其与膜微区如脂筏的相关性调节。我们在本研究中通过分析 Cys^{415} [螺旋8(helix 8)末端棕榈酸化的可能位点]定点突变的功能后果,就膜相关性、脂筏靶向性和信号传递等,考查了 CB_1 受体棕榈酸化的作用。

实验方法:通过去棕榈酸化/复棕榈酸化实验,评估大鼠前脑CB₁受体的棕榈酸化状态。通过定点突变技术,以丙氨酸取代Cys⁴¹⁵。在SH-SY5Y细胞和HEK-293细胞中,瞬态表达野生型和突变型受体的绿色荧光蛋白嵌合体,并通过共聚焦显微镜、细胞荧光测定术和竞争性结合试验对其进行功能鉴定。应用光脱色共聚焦荧光恢复技术评估受体的膜动力学,并以[³⁵S]GTP₂S、cAMP和免疫共沉淀试验评估信号活性。

关键结果:大鼠脑中的内源性 CB_1 受体被棕榈酸化。 Cys^{415} 突变能防止转染细胞中的受体棕榈化,减少其向质膜和脂筏的募集;也能提高蛋白扩散的运动能力。同样的突变能显著减少 CB_1 受体与G蛋白和腺苷酸环化酶的功能性结合,而去棕榈酸化可以消除受体与G蛋白特定亚基的相关性。

结论与启示: CB₁受体被棕榈酸化翻译后修饰。Cvs⁴¹⁵的突变提供了一个在膜靶向性和信号方面功能受损的受体。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01658.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01658.x

The CB₁ cannabinoid receptor C-terminus regulates receptor desensitization in autaptic hippocampal neurones

CB₁大麻素受体C末端能调节自体突触海马神经元中的受体脱敏

Alex Straiker, Jim Wager-Miller and Ken Mackie

Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA

背景和目的:大麻素 CB_1 受体是大麻素类中枢神经系统(CNS)作用的主要介质。在细胞培养模型系统中, CB_1 受体在激活情况下可发挥脱敏作用与内吞作用。此前的研究表明该受体的羧基最末端通过簇集在此区域的残基磷酸化情况调节内吞作用。 CB_1 受体羧基末端的突变分析已显示出最末的6个丝氨酸/苏氨酸残基是激动剂诱导的内吞作用所必须的。然而, CB_1 受体内吞作用的结构决定子也依赖于局部细胞环境。细胞内外环境对 CB_1 受体功能的重要性需要研究神经元中这些残基的功能性作用。

实验方法:为检测神经元中 CB_1 受体内吞作用的结构要求,我们使用电生理方法评估羧基末端突变的 CB_1 受体的信号传导特性。这些 CB_1 受体是表达在培养的自体突触型的海马神经元中的。

关键结果: CB_1 受体敲除神经元中转染的 CB_1 受体可发出信号并形成脱敏作用。这些结果使得我们进一步检测特异的 CB_1 受体突变。剔除最后13个残基形成一种可抑制兴奋型突触后电流但无脱敏作用的 CB_1 受体。而且最后6个丝氨酸与苏氨酸至丙氨酸的突变形成了一种非脱敏型受体。相比之下,缺少第419-460个残基而保留最后14个残基完整的 CB_1 受体确实具有脱敏作用。

结论与启示: CB₁受体的远端13个残基对于这些受体在培养的神经元中的脱敏作用有关键作用。此外,这种脱敏作用很可能发生在此区域内的丝氨酸与苏氨酸的磷酸化事件之后。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01743.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01743.x

Differential signalling in human cannabinoid CB₁ receptors and their splice variants in autaptic hippocampal neurons

人大麻素CB1受体的差异信号及其在自突触海马神经元中的剪接变异体

Alex Straiker, Jim Wager-Miller, Jacqueline Hutchens and Ken Mackie Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA

背景和目的:大麻素类,例如 Δ^9 -四氢大麻酚[普通大麻(marijuana)和印度大麻(hashish)的主要精神活性成分],主要通过大麻素 CB_1 和 CB_2 受体作用而对人产生特有的行为作用。由于啮齿类动物模型在电生理学和行为学研究中的易操作性,因此大部分有关大麻素受体作用的研究采用的都是啮齿类动物的大麻素受体。虽然 CB_1 受体在哺乳类动物中变化得非常少,但是人 CB_1 受体(h CB_1)在13个残基上与r CB_1 和m CB_1 受体不同,这便会导致信号差异。此外,已经有两种h CB_1 剪接变异体(h CB_{1a} 和h CB_{1b})被报告,相对于h CB_1 受体,它们的氨基末端不同。在本研究中,我们考查了神经元中的h CB_1 信号。

实验方法:在 CB_1 受体基因敲除(CB_1 –/–)小鼠的自突触培养海马神经元中表达h CB_1 、h CB_{1a} 、h CB_{1b} 或r CB_1 受体。这些细胞表达完全的内源性大麻素信号系统。利用电生理学技术评估 CB_1 受体介导的信号。

关键结果:表达于 CB_1 –/-小鼠的自突触海马神经元培养中的 hCB_1 、 hCB_{1a} 和 hCB_{1b} 受体,发送信号的方式互不相同,与啮齿类动物的 CB_1 受体也不一样。具体来说, hCB_1 受体抑制突触传递的效率比 rCB_1 受体差。

结论与启示:我们的结果表明,人体的大麻素受体信号与啮齿类动物的大麻素受体信号有巨大的定量。由于人类存在普通大麻和印度大麻的滥用问题,因此我们的研究结果突出强调了研究 hCB_1 受体的重要性。考虑到 hCB_1 受体剪接变异体的差异性信号和对人类健康的潜在影响,我们也建议对 hCB_1 受体剪接变异体的分布和功能做进一步研究。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01744.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01744.x

Slow receptor dissociation is not a key factor in the duration of action of inhaled long-acting β_2 -adrenoceptor agonists

受体解离缓慢不是吸入性长效β₂肾上腺素受体激动剂作用持续时间的 关键因子

David A Sykes and Steven J Charlton

Novartis Institutes for Biomedical Research, West Sussex, UK

背景和目的: β_2 肾上腺素受体激动剂是用于治疗慢性阻塞性肺疾病和哮喘的重要支气管舒张剂。关于 β_2 肾上腺素受体激动剂的临床资料显示了其一系列不同作用起效和持续时间。本研究旨在探讨是否可以从 β_2 肾上腺素受体激动剂的受体结合动力学来解释其在临床上观察到的作用起效情况和持续时间。

实验方法:以[3 H]-DHA标记表达于CHO细胞膜上的 β_{2} 肾上腺素受体(K_{d} 为0.084 nM)。在有未标记 β_{2} 肾上腺素受体激动剂存在的情况下,使用含有GTP的HBSS在37°C的温度条件下进行竞争动力学实验。针对固定浓度 (0.6 nM)的[3 H]-DHA使用三种浓度(K_{d} 分别为10×,3×和1×)的未标记化合物,测定动力学参数。

关键结果:临床使用的 β_2 肾上腺素受体激动剂显示了多个结合和解离速率。 $8 \cap \beta_2$ 肾上腺素受体激动剂的动力学 K_d 与竞争 K_i 数值具有强相关性,这些结果表明此方法可产生准确的 k_{off} 速率和 k_{on} 速率。此动力学速率与平衡结合亲和性高度相关。

结论与启示:尽管 β_2 肾上腺素受体激动剂显示了一系列动力学速率参数,但是有关药物浓度下的模拟情况表明受体的动力学在临床上并没有对决定药物作用起效时间起到重要作用。另外,受体动力学不可能对这些激动剂作用的持续时间产生重要的影响,因为较之于沙美特罗(每天两次给药),茚达特罗(每天一次给药)在受体上的停留时间较短。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01639.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01639.x

Role of neurosteroids in the anticonvulsant activity of midazolam 神经甾体类物质在咪达唑仑的抗惊厥活性中的作用

Ashish Dhir¹ and Michael A Rogawski^{1,2}

¹Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA, and ²Center for Neuroscience, University of California, Davis, Sacramento, CA, USA

背景和目的: 咪达唑仑是一种短效的苯二氮卓类,被广泛用作静脉注射型镇静剂和抗惊厥药。除了与GABA_A受体上的苯二氮卓类位点发生相互作用,一些苯二氮卓类还可作为转运蛋白(TSPO, 18 kDa)的激动剂增强甾体类物质的合成,包括对GABA_A受体有正性调节作用的神经甾体类物质。本研究旨在确定咪达唑仑诱导的神经甾体生成是否有助于其抗惊厥作用。

实验方法:使用神经甾体合成抑制剂和增强剂对小鼠进行预处理,然后应用咪达唑仑或弱TSPO配体氯硝西泮。使用静脉注射戊四氮(PTZ)阈值测试评估抗惊厥活性。

关键结果: 咪达唑仑(500-5000微克/千克,腹腔注射)可使癫痫发作阈值呈剂量依赖性升高。神经甾体合成抑制剂非那雄胺(5α还原酶抑制剂)与一个功能性TSPO拮抗剂PK 11195预处理可减弱咪达唑仑的抗惊厥作用。神经甾体能药物甲吡酮(一个11β羟化酶抑制剂)可增强咪达唑仑的抗惊厥作用。相比之下,非那雄胺可减弱氯硝西泮(100微克/千克)的抗惊厥作用,但PK 11195没有该作用,这表明神经甾体类物质的潜在作用与TSPO不相关。

结论与启示:内源性神经甾体合成增强很可能受与TSPO的相互作用介导,有助于咪达唑仑的抗惊厥作用。增强的神经甾体生成也可能是其他苯二氮卓类发生作用的一个因素,甚至包括那些与TSPO仅有很弱相互作用的苯二氮卓类。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01733.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01733.x

Bilobetin ameliorates insulin resistance by PKA-mediated phosphorylation of PPAR α in rats fed a high-fat diet

白果素通过PKA介导PPARα磷酸化改善高脂食物饲养大鼠的胰岛素 耐药性

Xin-Hui Kou¹, Mei-Feng Zhu², Dai Chen², Yi Lu¹, Hui-Zhu Song¹, Jian-Lin Ye¹ and Lin-Feng Yue¹

¹Department of Pharmacy, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China, and ²Department of Nephrology, Changzhou Traditional Chinese Medical Hospital affiliated to Nanjing University of Traditional Chinese Medicine, Changzhou, China

背景和目的:白果素(bilobetin)对胰岛素耐药性的改善作用与它的降血脂作用密切相关。本研究旨在通过阐明白果素对脂肪代谢的作用确定其胰岛素致敏机制。

实验方法:给高脂食物饲养的大鼠应用白果素,于4天或者14天后应用高胰岛素-正葡萄糖钳夹。利用放射性同位素标记的甘油三酯和脂肪酸,追踪组织中的脂肪转运和归宿。测定脂肪代谢相关酶类的活性和β-氧化率。运用免疫印迹技术(Western blot)研究多种组织和培养细胞中的PPARα磷酸化、转位和表达。此外还研究了经PPARα磷酸化后的氨基酸残基定位。

关键结果: 白果素能改善胰岛素耐药性,提高脂肪的肝摄取和氧化,减少极低密度脂蛋白甘油三酯分泌和血液中的甘油三酯水平,增强β-氧化相关酶体的表达和活性,减少甘油三酯及其代谢物在组织中的积聚。白果素也能提高 PPARα的磷酸化水平、核转位和活性,同时能提高cAMP水平和PKA活性。PPARα基因上的苏氨酸-129-丙氨酸和/或丝氨酸-163-丙氨酸突变和PKA抑制剂能阻断白果素对PPARα的作用。不过,过表达PKA的细胞似乎能刺激 PPARα的磷酸化、核转位和活性。

结论与启示:白果素能通过刺激 $PPAR\alpha$ 介导的脂肪分解代谢,改善大鼠的高血脂、脂毒性和胰岛素耐药性。PKA激活对这个过程至关重要。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01727.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01727.x

Mechanism of action of the insecticides, lindane and fipronil, on glycine receptor chloride channels

杀虫剂林丹和氟虫腈对甘氨酸受体氯通道的作用机制

Robiul Islam^{1,2} and Joseph W Lynch^{1,2}

¹Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia, and ²School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia

背景和目的:根据对接研究预测,杀虫剂林丹(lindane)和氟虫腈(fipronil)通过结合6′孔隙内壁的残基(6′ porelining residues)阻断GABA_A受体。然而,这个预测尚未在任何胱氨酸环(Cys-loop)受体上被测试过。虽然最近有一项形态学研究表明,是甘氨酸受体介导了斑马鱼中的氟虫腈毒性,但是这些杀虫剂的神经毒性作用被认为还是由GABA_A受体介导的。我们将在本研究中了解人 α 1、 α 1 β 、 α 2 α 3甘氨酸受体是否足够敏感以致可被任何一种化合物阻断,从而可作为一个潜在的神经毒性靶点。此外我们还探讨了林丹和氟虫腈抑制 α 1甘氨酸受体的机制。

实验方法: 甘氨酸受体重组表达于HEK293细胞,利用膜片钳电生理技术研究杀虫剂的作用。

关键结果:这两种化合物都能完全抑制所有被测的甘氨酸受体亚型, IC_{50} 值介于0.2至2 μM之间,与它们在脊椎动物 $GABA_{A}$ 受体上的强度相似。与分子对接预测一致的是,林丹和氟虫腈都通过疏水相互作用和氢键与6'苏氨酸残基有相互作用。与预测结果相反,我们没有发现林丹在2'水平相互作用的证据。我们展示了氟虫腈在麻醉剂结合袋以非阻断方式结合及林丹作为鉴定αβ异源性甘氨酸受体中β亚基存在是极佳药理学工具的证据。

结论与启示:本研究表明甘氨酸受体是氟虫腈和林丹的脊椎动物毒性新靶点。此外,林丹与孔隙内壁的6′苏氨酸残基有相互作用,而氟虫腈可能既有孔隙也有非孔隙结合位点。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01722.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01722.x

Double blockade of angiotensin II (AT1)-receptors and ACE does not improve weight gain and glucose homeostasis better than single-drug treatments in obese rats

血管紧张素II(AT₁)受体与ACE双重阻断并不比单药治疗更能改善肥胖 大鼠的体重增加和葡萄糖平衡

Anja Miesel¹, Helge Müller-Fielitz¹, Olaf Jöhren¹, Florian M Vogt² and Walter Raasch¹

¹Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany, and

²Clinic for Radiology and Nuclear Medicine, University of Lübeck, Lübeck, Germany

背景和目的:联合疗法日益显示出对高血压治疗的重要性。人们对于血管紧张素 $II(AT_1)$ 受体与血管紧张素转换酶 (ACE)双重阻断能否发挥协同代谢作用知之甚少。

实验方法: 让自发性高血压大鼠在可口的巧克力棒与标准饮食之间择食,同时使用AT₁阻断剂替米沙坦(8毫克/千克体重/天)、ACE抑制剂雷米普利(4毫克/千克体重/天)或两者联合(8+4毫克/千克体重/天)给药处理12周。

关键结果:与雷米普利给药处理组或对照组相比,尽管替米沙坦与替米沙坦+雷米普利增加食物依赖的能量摄取,但体重增加、脂肪丰度与血浆瘦素水平均下降。口服葡萄糖耐受检测的胰岛素水平增加应答反应可被替米沙坦与替米沙坦+雷米普利同等减弱,而雷米普利则不能。在胰岛素耐受检测期间,替米沙坦与替米沙坦+雷米普利同样有效地改善葡萄糖利用情况。针对应激反应检测的应答,对照组中ACTH、皮质脂酮与葡萄糖水平增加。替米沙坦与替米沙坦+雷米普利可减弱这些应激反应。

结论与启示:替米沙坦+雷米普利联合用药在调节体重与葡萄糖动态平衡方面并不比替米沙坦单药更有效。然而,替米沙坦在改善代谢参数和降低体重方面比雷米普利更加有效。应激后应激应答反应减弱与葡糖糖水平下降这二者间的关联性支持我们的假设:替米沙坦(作为一个AT₁受体阻断剂)减缓应激反应的能力可能有助于其降血糖作用。

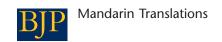
To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01726.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01726.x

Glucagon and a glucagon-GLP-1 dual-agonist increases cardiac performance with different metabolic effects in insulin-resistant hearts

胰高血糖素和胰高血糖素-GLP-1双重激动剂通过不同代谢作用提高 胰岛素耐药心脏的心功能

LN Axelsen^{1,2,3}, W Keung¹, HD Pedersen², E Meier², D Riber², AL Kjølbye², JS Petersen², SD Proctor⁴, N-H Holstein-Rathlou³ and GD Lopaschuk¹

¹Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, and Metabolic and Cardiovascular Diseases Laboratory, Edmonton, AB, Canada, ²Zealand Pharma, Glostrup, Denmark, ³The Danish National Research Foundation Centre for Cardiac Arrhythmia and Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark, and ⁴Alberta Institute for Human Nutrition, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada


背景和目的:心脏病的发生率持续上升,特别是在胰岛素耐药(IR)个体中,为这类患者改进医疗方式是一个重大挑战。在本研究中,我们分别在应用促肌肉收缩性化合物(胰高血糖素),胰高血糖素样肽-1(GLP-1)受体激动剂(ZP131)或胰高血糖素-GLP-1双重激动剂(ZP2495)的前后评估了IR JCR: LA-*cp*大鼠心脏的心功能和能量代谢。

实验方法:分离IR大鼠和JCR:LA瘦鼠心脏,在工作心脏方式下灌注,分别在加入赋形剂、胰高血糖素、ZP131或 ZP2495前后测定心脏功能和代谢。然后通过高效液相色谱法测定心脏中的核苷酸和短链CoA酯水平。

关键结果:与对照组大鼠相比,IR大鼠心脏的糖酵解和葡萄糖氧化速率减慢,并有棕榈酸盐氧化速率加快,不过其心脏功能和能量状况(通过ATP与AMP之比测定)正常。胰高血糖素加速了对照和IR大鼠心脏中的葡萄糖氧化和糖酵解速率,这种加速并不足以避免IR心脏中的AMP和ADP积聚。ZP131在IR或在对照大鼠心脏中都没有显著的代谢或功能性作用。相反,ZP2495却能将IR心脏中的葡萄糖氧化和糖酵解速率提高到与胰高血糖素相似的程度,不过没有伴随AMP或ADP的积聚。

结论与启示:虽然胰高血糖素会影响到IR心脏的能量状态,但是胰高血糖素-GLP-1双重激动剂ZP2495似乎能维护能量状态。因此,与单用胰高血糖素相比,胰高血糖素-GLP-1双重激动剂对治疗IR个体的严重心衰或心源性休克有良好作用。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01714.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01714.x

S(+)amphetamine induces a persistent leak in the human dopamine transporter: molecular stent hypothesis

S(+)苯丙胺可引起人多巴胺转运蛋白持续渗出:分子支架假说

Aldo A Rodriguez-Menchaca, Ernesto Solis Jr, Krasnodara Cameron and Louis J De Felice Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA **背景和目的**: 多巴胺转运蛋白(DATs)发挥清除细胞外的多巴胺(DA)以帮助调节多巴胺能信号通路的作用。苯丙胺 (AMPH)可增加细胞外突触间隙内DA的浓度,这种现象被认为是DAT反转运造成的。增加细胞外DA能延长突触后活动并强化滥用与享乐行为。

实验方法:将表达人(h)DAT受体的爪蟾卵母细胞暴露于DA、R(-)AMPH或S(+)AMPH后用膜片钳记录发生的变化。

关键结果:在-60mV的神经元静息电位附近,S(+)AMPH诱发了爪蟾卵母细胞(hDAT)的除极电流,该现象在去除药物后还持续了30多分钟。这种现象与R(-)AMPH和DA引起的现象形成鲜明对比,在去除这两种物质后电流马上回到基线水平。本研究表明S(+)AMPH诱发电流由S(+)AMPH和Na $^+$ 引起,而Na $^+$ 和Cl $^-$ 则维持电流。我们推测持续电流是因为S(+)AMPH作用于hDAT时产生了内在反应,因为这种效应与S(+)AMPH内流一致并由细胞内的S(+)AMPH触发。该持续性电流有赖于Na $^+$ 存在,并可被可卡因阻断。将S(+)AMPH注入细胞内也可触发DA-诱导的持续电流。

结论与启示:本次研究发现了一种未知的新现象,即S(+)AMPH作用于hDAT时可能影响AMPH-诱导的DA释放。我们推测S(+)AMPH在细胞内可能起分子支架作用,它能使转运蛋白通道在外部S(+)AMPH去除后仍保持开放。苯丙胺诱导的持续性电流可能与多巴胺能信号系统、DA释放机制以及苯丙胺类药物的滥用有关。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01728.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01728.x

The cytoprotective effects of oleoylethanolamide in insulin-secreting cells do not require activation of GPR119

胰岛素分泌细胞中油酰乙醇胺的细胞保护作用无须激活GPR119受体

Virginia M Stone¹, Shalinee Dhayal¹, David M Smith², Carol Lenaghan², Katy J Brocklehurst² and Noel G Morgan¹

¹Institute of Biomedical & Clinical Sciences, Peninsula Medical School, University of Exeter, Plymouth, Devon, UK, and ²AstraZeneca Diabetes and Obesity Drug Discovery, Macclesfield, Cheshire, UK

背景和目的:β细胞能表达一些列脂肪酸应答的G蛋白偶联受体,包括GPR119,可调节胰岛素分泌,并且被认为是2型糖尿病的一个潜在治疗靶点。长链不饱和脂肪酸衍生物油酰乙醇胺(OEA)是GPR119的内源性激动剂,在某些条件下,一些长链不饱和脂肪酸可促进β细胞的细胞保护作用。然而,β细胞中的OEA是否具有细胞保护效果尚属未知。本研究旨在探究此问题并研究GPR119是否参与其中。

实验方法:克隆源性大鼠胰岛素分泌细胞系BRIN-BD11或INS-1E暴露于与BSA相复合的脂肪酸中。测量cAMP水平、胰岛素释放与细胞存活力。使用蛋白免疫印迹法研究蛋白表达,通过RT-PCR测量受体表达。

关键结果: GPR119在BRIN-BD11与INS-1E细胞中均有表达,并且OEA在这些细胞中具有细胞保护作用。然而,任何一种选择性GPR119的合成配体都不能复制这种细胞保护作用。针对OEA的细胞保护性应答在暴露于脂肪酸酰胺水解酶(FAAH)抑制剂的情况下会丧失,这表明OEA本质上不是产生细胞保护的原因物质,而是需要游离形式的油酸的释放。类似资料亦可使用anandamide获得,其只有在有利于游离花生四烯酸释放的条件下才具有细胞保护作用。

结论与启示:BRIN-BD11与INS-1E细胞中OEA细胞保护作用的介导并不需要GPR119激活。相反,OEA可被内吞化并且通过FAAH水解而释放游离油酸,然后介导细胞保护作用。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01755.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01755.x

Investigation of mechanism of drug-induced cardiac injury and torsades de pointes in cynomolgus monkeys

猕猴体内药物诱导的心脏损伤与尖端扭转型心动过速的机制研究

DL Misner¹, C Frantz², L Guo³, MR Gralinski⁴, PB Senese⁴, J Ly⁵, M Albassam³ and KL Kolaja³

¹Celgene Corporation, San Diego, CA, USA, ²Medimmune, Mountain View, CA, USA, ³Hoffmann-La Roche, Nutley, NJ, USA, ⁴CorDynamics Inc., Chicago, IL, USA, and ⁵Genentech, South San Francisco, CA, USA

背景和目的:候选药物的心脏副作用必须得到充分的研究。在常规毒理学评价过程期间,研究人员发现化合物 RO5657(一种CCR5拮抗剂)有诱导正常健康动物形成尖端扭转型室性心动过速(多形性室性心律失常)的罕见作用能力。我们通过研究来检测这种心律失常的分子机制。

实验方法:对未经药物处理过的猴子进行重复给药的毒理作用评估。在清醒遥测植入的猴子(重复给药)与麻醉的仪器化犬(单剂给药)体内测量心血管作用。在豚鼠离体心脏与重组表达人心脏通道的细胞中进行机理研究。

关键结果:RO5657可导致猕猴形成低发病率的心肌变性和较高发病率的ECG失常,包括QT/QTc间期延长、QRS波群变宽与室上性心动过速。在遥感植入的猴子体内,RO5657诱导形成心律失常,包括尖端扭转型室性心动过速及一例变性至致命的心室颤动。RO5657也抑制心率(HR)与血压(BP),无组织学证据显示心肌变性。在麻醉的大及豚鼠离体心脏研究中,RO5657诱导形成类似的心血管作用。RO5657也同样抑制Kv11.1与钠通道电流。

结论与启示:据猜想,RO5657的分子机制与心脏钠与Kv11.1钾通道抑制作用有关。这些研究结果表明RO5657有致心律失常性,这与血流动力学功能(HR/BP)减弱、多种心脏通道的传导减弱和抑制有关。这些作用首先发生并可能是所观察到的心肌变性的致病因素。

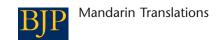
To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01756.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01756.x

Potent mechanism-based inhibition of CYP3A4 by imatinib explains its liability to interact with CYP3A4 substrates

伊马替尼对CYP3A4酶基于机制的强效抑制作用是其与CYP3A4底物可能发生相互作用的原因

AM Filppula¹, J Laitila¹, PJ Neuvonen^{1,2} and JT Backman^{1,2}

¹Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland, and ²HUSLAB, Helsinki University Central Hospital, Helsinki, Finland


背景和目的:伊马替尼(imatinib)是细胞色素P450 2C8 (CYP2C8)和CYP3A4的底物,能显著提高CYP3A4/5底物 辛伐他汀的血药浓度,降低人体肝脏的CYP3A4/5活性。因为CYP3A4/5的竞争性抑制并不能解释这些体内相互作用,所以我们考查了伊马替尼及其主要代谢物N-去甲基伊马替尼对CYP2C8和CYP3A4/5的可逆性和时间依赖性体外抑制作用。

实验方法:以阿莫地喹N-去乙基化和咪达唑仑1′-羟基化作为CYP2C8和CYP3A4/5活性的标记物反应。利用人肝 微粒体评估直接、 IC_{50} 位移(IC_{50} -shift)和时间依赖性抑制作用。

关键结果:伊马替尼对CYP3A4活性的抑制呈预培养的时间、浓度和NADPH依赖性,时间依赖性失活变量 K_1 和 k_{inact} 分别为14.3 μ M和0.072/min。在直接抑制实验中,伊马替尼和N-去甲基伊马替尼抑制阿莫地喹N-去乙基化的 K_1 值分别为8.4和12.8 μ M,抑制咪达唑仑的 K_1 值分别为23.3和18.1 μ M。据预测,在有临床意义的伊马替尼浓度下,其时间依赖性抑制作用可产生多达90%的肝CYP3A4酶活性抑制作用,但是体内直接抑制作用可忽略不计。

结论与启示:伊马替尼是CYP3A4酶基于机制的强效体外抑制剂,这个发现可以解释伊马替尼与辛伐他汀之间的相互作用,并表明伊马替尼可能显著提高其它CYP3A4底物的血药浓度。本研究结果也表明有可能自动抑制CYP3A4介导的伊马替尼代谢,因此CYP3A4酶在伊马替尼体内生物转化中的作用将不像此前认为的那么显著。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01732.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01732.x

Agonists at GPR119 mediate secretion of GLP-1 from mouse enteroendocrine cells through glucose-independent pathways

GPR119激动剂能通过葡萄糖非依赖通路介导小鼠内分泌细胞中的 GLP-1分泌

H Lan¹, HV Lin¹, CF Wang¹, MJ Wright¹, S Xu¹, L Kang¹, K Juhl¹, JA Hedrick² and TJ Kowalski¹

¹Diabetes and Endocrinology, Merck Research Laboratories, Rahway, NJ, USA, and ²Biologics, Merck Research Laboratories, Rahway, NJ, USA

背景和目的: G蛋白偶联受体119(GPR119)介导胰岛β细胞的胰岛素以及小肠L细胞的胰高血糖素样肽1 (GLP-1)的分泌。但GPR119介导的胰岛素分泌是葡萄糖依赖性的,现在尚不清楚GPR119介导的GLP-1分泌是否也呈葡萄糖依赖性。本研究旨在阐明糖依赖性的GPR119介导的GLP-1分泌并探究其可能与β细胞不同的在L细胞内发生作用的机制。

实验方法:体内及体外观察小肠L细胞系(GLUTag)在有糖及无糖环境下受GPR119激动剂作用后GLP-1的分泌以及离子通道调控的变化。用分泌胰岛素的Min6细胞(一种β细胞系)作对照。

关键结果:在GLUTag细胞,GPR119激动剂在有糖或无糖环境下均可引起GLP-1分泌。在原代小鼠结肠培养细胞中,GPR119激动剂在无糖环境下也可刺激GLP-1的分泌。此外,GPR119激动剂还能增加无糖负荷小鼠血浆中的GLP-1水平。但是,在Min6细胞内,GPR119介导的胰岛素分泌却需依赖葡萄糖。尼群地平(L型电压依赖钙通道阻滞剂)对GLUTag细胞的GLP-1分泌有剂量依赖效应,但在无糖环境下对Min6细胞无影响。

结论与启示:与胰岛β细胞不同,GPR119在体内及体外介导L细胞分泌GLP-1的作用是不依赖于葡萄糖的,这可能 是由于L细胞的钙离子基础水平较高。

To view the full version of this article please visit http://dx.doi.org/10.1111/j.1476-5381.2011.01754.x 查看全文请访问 http://dx.doi.org/10.1111/j.1476-5381.2011.01754.x